Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Res ; 118(13): 2805-2818, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34648001

RESUMO

AIMS: Abnormal intracellular calcium (Ca2+) handling contributes to the progressive nature of atrial fibrillation (AF), the most common sustained cardiac arrhythmia. Evidence in mouse models suggests that activation of the nuclear factor of activated T-cell (NFAT) signalling pathway contributes to atrial remodelling. Our aim was to determine the role of NFATc2 in AF in humans and mouse models. METHODS AND RESULTS: Expression levels of NFATc1-c4 isoforms were assessed by quantitative reverse transcription-polymerase chain reaction in right atrial appendages from patients with chronic AF (cAF). NFATc1 and NFATc2 mRNA levels were elevated in cAF patients compared with those in normal sinus rhythm (NSR). Western blotting revealed increased cytosolic and nuclear levels of NFATc2 in AF patients. Similar findings were obtained in CREM-IbΔC-X transgenic (CREM) mice, a model of progressive AF. Telemetry ECG recordings revealed age-dependent spontaneous AF in CREM mice, which was prevented by NFATc2 knockout in CREM:NFATc2-/- mice. Programmed electrical stimulation revealed that CREM:NFATc2-/- mice lacked an AF substrate. Morphometric analysis and histology revealed increased atrial weight and atrial fibrosis in CREM mice compared with wild-type controls, which was reversed in CREM:NFATc2-/- mice. Confocal microscopy showed an increased Ca2+ spark frequency despite a reduced sarcoplasmic reticulum (SR) Ca2+ load in CREM mice compared with controls, whereas these abnormalities were normalized in CREM:NFATc2-/- mice. Western blotting revealed that genetic inhibition of Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation of S2814 on ryanodine receptor type 2 (RyR2) in CREM:RyR2-S2814A mice suppressed NFATc2 activation observed in CREM mice, suggesting that NFATc2 is activated by excessive SR Ca2+ leak via RyR2. Finally, chromatin immunoprecipitation sequencing from AF patients identified Ras and EF-hand domain-containing protein (Rasef) as a direct target of NFATc2-mediated transcription. CONCLUSION: Our findings reveal activation of the NFAT signalling pathway in patients of Chinese and European descent. NFATc2 knockout prevents the progression of AF in the CREM mouse model.


Assuntos
Fibrilação Atrial , Fatores de Transcrição NFATC , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Humanos , Camundongos , Fibrilação Atrial/genética , Fibrilação Atrial/prevenção & controle , Fibrilação Atrial/patologia , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Modulador de Elemento de Resposta do AMP Cíclico/genética , Modulador de Elemento de Resposta do AMP Cíclico/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , RNA Mensageiro/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo
2.
FASEB J ; 34(8): 10489-10504, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32579290

RESUMO

Adenylyl cyclases (AC) are essential for the normal and pathophysiological response of many cells. In cardiomyocytes, the predominant AC isoforms are AC5 and AC6. Specific AC5 inhibition was suggested as an option for the treatment of heart failure potentially advantageous over ß-blockers. We previously reported an interaction between the calcium-binding protein annexin A4 (ANXA4) and AC5 in human embryonic kidney 293 (HEK293) cells and an inhibition of cyclic adenosine monophosphate (cAMP) production in cardiomyocytes. Here, we investigated whether ANXA4 is able to differentiate between AC5 and AC6. In transfected HEK293 cells, ANXA4 specifically co-immunoprecipitated with AC5 and not with AC6, via its N-terminal domain. Both ANXA4 and a peptide comprising the ANXA4 N-terminal sequence (A4N1-22 ) decreased the cAMP production in AC5 and not in AC6 expressing cells. In line with ACs inhibition, in myocytes from ANXA4-deficient mice, ß-adrenoceptor (ßAR) stimulation led to a higher increase of the L-type calcium current (ICaL ) and to an excessive action potential duration (APD) prolongation as compared to wild-type cardiomyocytes. This enhanced response was reversed in the presence of A4N1-22 peptide likely via specific AC5 inhibition. We conclude that via the N-terminal domain ANXA4 inhibits AC5 not AC6, and that A4N1-22 as a specific AC5 inhibitor could serve as a novel therapeutic tool for the treatment of AC5-linked diseases.


Assuntos
Potenciais de Ação/fisiologia , Adenilil Ciclases/metabolismo , Anexina A4/metabolismo , Coração/fisiologia , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos/metabolismo , Animais , Canais de Cálcio Tipo L/metabolismo , Linhagem Celular , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Células Musculares/metabolismo
3.
Front Pharmacol ; 10: 1051, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31619997

RESUMO

Adenosine can be released from the heart and may stimulate four different cardiac adenosine receptors. A receptor subtype that couples to the generation of cyclic adenosine monophosphate (cAMP) is the A2A-adenosine receptor (A2A-AR). To better understand its role in cardiac function, we studied mechanical and electrophysiological effects in transgenic mice that overexpress the human A2A-AR in cardiomyocytes (A2A-TG). We used isolated preparations from the left atrium, the right atrium, isolated perfused hearts with surface electrocardiogram (ECG) recording, and surface body ECG recordings of living mice. The hypothesized arrhythmogenic effects of transgenicity per se and A2A-AR stimulation were studied. We noted an increase in the incidence of supraventricular and ventricular arrhythmias under these conditions in A2A-TG. Moreover, we noted that the A2A-AR agonist CGS 21680 exerted positive inotropic effect in isolated human electrically driven (1 Hz) right atrial trabeculae carneae. We conclude that A2A-ARs are functional not only in A2A-TG but also in isolated human atrial preparations. A2A-ARs in A2A-TG per se and their stimulation can lead to cardiac arrhythmias not only in isolated cardiac preparations from A2A-TG but also in living A2A-TG.

4.
Naunyn Schmiedebergs Arch Pharmacol ; 391(8): 859-873, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29797049

RESUMO

About half of the cardiac serine/threonine phosphatase activity is due to the activity of protein phosphatase type 1 (PP1). The activity of PP1 can be inhibited by an endogenous protein for which the expression inhibitor-2 (I-2) has been coined. We have previously described a transgenic mouse overexpressing a truncated form of I-2. Here, we have described and initially characterized several founders that overexpress the non-truncated (i.e., full length) I-2 in the mouse heart (TG) and compared them with non-transgenic littermates (WT). The founder with the highest overexpression of I-2 displayed under basal conditions no difference in contractile parameters (heart rate, developed tension, and its first derivate) compared to WT. The relative level of PP1 inhibition was similar in mice overexpressing the non-truncated as well as the truncated form of I-2. For comparison, we overexpressed I-2 by an adenoviral system in several cell lines (myocytes from a tumor-derived cell line (H9C2), neonatal rat cardiomyocytes, smooth muscle cells from rat aorta (A7R5)). We noted gene dosage-dependent staining for I-2 protein in infected cells together with reduced PP1 activity. Finally, I-2 expression in neonatal rat cardiomyocytes led to an increase of Ca2+ transients by about 60%. In summary, we achieved immunologically confirmed overexpression of wild-type I-2 in cardiovascular cells which was biochemically able to inhibit PP1 in the whole heart (using I-2 transgenic mice) as well as in isolated cells including cardiomyocytes (using I-2 coding virus) indirectly underscoring the importance of PP1 for cardiovascular function.


Assuntos
Miocárdio/metabolismo , Proteína Fosfatase 1/metabolismo , Proteínas/genética , Adenoviridae/genética , Animais , Linhagem Celular , Coração/fisiologia , Masculino , Camundongos Transgênicos , Miócitos de Músculo Liso/metabolismo , Proteínas/metabolismo , Ratos Wistar
5.
Circulation ; 138(20): 2227-2242, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-29802206

RESUMO

BACKGROUND: Atrial fibrillation (AF) is frequently associated with enhanced inflammatory response. The NLRP3 (NACHT, LRR, and PYD domain containing protein 3) inflammasome mediates caspase-1 activation and interleukin-1ß release in immune cells but is not known to play a role in cardiomyocytes (CMs). Here, we assessed the role of CM NLRP3 inflammasome in AF. METHODS: NLRP3 inflammasome activation was assessed by immunoblot in atrial whole-tissue lysates and CMs from patients with paroxysmal AF or long-standing persistent (chronic) AF. To determine whether CM-specific activation of NLPR3 is sufficient to promote AF, a CM-specific knockin mouse model expressing constitutively active NLRP3 (CM-KI) was established. In vivo electrophysiology was used to assess atrial arrhythmia vulnerability. To evaluate the mechanism of AF, electric activation pattern, Ca2+ spark frequency, atrial effective refractory period, and morphology of atria were evaluated in CM-KI mice and wild-type littermates. RESULTS: NLRP3 inflammasome activity was increased in the atrial CMs of patients with paroxysmal AF and chronic AF. CM-KI mice developed spontaneous premature atrial contractions and inducible AF, which was attenuated by a specific NLRP3 inflammasome inhibitor, MCC950. CM-KI mice exhibited ectopic activity, abnormal sarcoplasmic reticulum Ca2+ release, atrial effective refractory period shortening, and atrial hypertrophy. Adeno-associated virus subtype-9-mediated CM-specific knockdown of Nlrp3 suppressed AF development in CM-KI mice. Finally, genetic inhibition of Nlrp3 prevented AF development in CREM transgenic mice, a well-characterized mouse model of spontaneous AF. CONCLUSIONS: Our study establishes a novel pathophysiological role for CM NLRP3 inflammasome signaling, with a mechanistic link to the pathogenesis of AF, and establishes the inhibition of NLRP3 as a potential novel AF therapy approach.


Assuntos
Fibrilação Atrial/patologia , Miócitos Cardíacos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Artérias/metabolismo , Artérias/patologia , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/metabolismo , Cálcio/metabolismo , Modelos Animais de Doenças , Cães , Eletroencefalografia , Furanos/farmacologia , Furanos/uso terapêutico , Compostos Heterocíclicos de 4 ou mais Anéis , Humanos , Hipertrofia/etiologia , Hipertrofia/prevenção & controle , Indenos , Inflamassomos/metabolismo , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Técnicas de Patch-Clamp , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Retículo Sarcoplasmático/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Sulfonas
6.
Front Pharmacol ; 9: 13, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29403384

RESUMO

Background: Adenosine can be produced in the heart and acts on cardiac adenosine receptors. One of these receptors is the A2A-adenosine receptor (A2A-AR). Methods and Results: To better understand its role in cardiac function, we generated and characterized mice (A2A-TG) which overexpress the human A2A-AR in cardiomyocytes. In isolated atrial preparations from A2A-TG but not from WT, CGS 21680, an A2A-AR agonist, exerted positive inotropic and chronotropic effects. In ventricular preparations from A2A-TG but not WT, CGS 21680 increased the cAMP content and the phosphorylation state of phospholamban and of the inhibitory subunit of troponin in A2A-TG but not WT. Protein expression of phospholamban, SERCA, triadin, and junctin was unchanged in A2A-TG compared to WT. Protein expression of the α-subunit of the stimulatory G-protein was lower in A2A-TG than in WT but expression of the α-subunit of the inhibitory G-protein was higher in A2A-TG than in WT. While basal hemodynamic parameters like left intraventricular pressure and echocardiographic parameters like the systolic diameter of the interventricular septum were higher in A2A-TG than in WT, after ß-adrenergic stimulation these differences disappeared. Interestingly, A2A-TG hearts sustained global ischemia better than WT. Conclusion: We have successfully generated transgenic mice with cardiospecific overexpression of a functional A2A-AR. This receptor is able to increase cardiac function per se and after receptor stimulation. It is speculated that this receptor may be useful to sustain contractility in failing human hearts and upon ischemia and reperfusion.

7.
J Am Heart Assoc ; 5(5)2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27207969

RESUMO

BACKGROUND: Sphingosine-1-phosphate plays vital roles in cardiomyocyte physiology, myocardial ischemia-reperfusion injury, and ischemic preconditioning. The function of the cardiomyocyte sphingosine-1-phosphate receptor 1 (S1P1) in vivo is unknown. METHODS AND RESULTS: Cardiomyocyte-restricted deletion of S1P1 in mice (S1P1 (α) (MHCC) (re)) resulted in progressive cardiomyopathy, compromised response to dobutamine, and premature death. Isolated cardiomyocytes from S1P1 (α) (MHCC) (re) mice revealed reduced diastolic and systolic Ca(2+) concentrations that were secondary to reduced intracellular Na(+) and caused by suppressed activity of the sarcolemmal Na(+)/H(+) exchanger NHE-1 in the absence of S1P1. This scenario was successfully reproduced in wild-type cardiomyocytes by pharmacological inhibition of S1P1 or sphingosine kinases. Furthermore, Sarcomere shortening of S1P1 (α) (MHCC) (re) cardiomyocytes was intact, but sarcomere relaxation was attenuated and Ca(2+) sensitivity increased, respectively. This went along with reduced phosphorylation of regulatory myofilament proteins such as myosin light chain 2, myosin-binding protein C, and troponin I. In addition, S1P1 mediated the inhibitory effect of exogenous sphingosine-1-phosphate on ß-adrenergic-induced cardiomyocyte contractility by inhibiting the adenylate cyclase. Furthermore, ischemic precondtioning was abolished in S1P1 (α) (MHCC) (re) mice and was accompanied by defective Akt activation during preconditioning. CONCLUSIONS: Tonic S1P1 signaling by endogenous sphingosine-1-phosphate contributes to intracellular Ca(2+) homeostasis by maintaining basal NHE-1 activity and controls simultaneously myofibril Ca(2+) sensitivity through its inhibitory effect on adenylate cyclase. Cardioprotection by ischemic precondtioning depends on intact S1P1 signaling. These key findings on S1P1 functions in cardiac physiology may offer novel therapeutic approaches to cardiac diseases.


Assuntos
Cálcio/metabolismo , Cardiomiopatias/genética , Precondicionamento Isquêmico Miocárdico , Traumatismo por Reperfusão Miocárdica/genética , Miócitos Cardíacos/metabolismo , Receptores de Lisoesfingolipídeo/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Potenciais de Ação , Adenilil Ciclases/metabolismo , Animais , Western Blotting , Miosinas Cardíacas/metabolismo , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/metabolismo , Proteínas de Transporte/metabolismo , Ecocardiografia , Imageamento por Ressonância Magnética , Camundongos , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Cadeias Leves de Miosina/metabolismo , Fosforilação , Tomografia por Emissão de Pósitrons , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Sarcômeros/metabolismo , Receptores de Esfingosina-1-Fosfato , Troponina I/metabolismo
8.
FASEB J ; 29(9): 3773-87, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26023182

RESUMO

Annexin A4 (AnxA4), a Ca(2+)- and phospholipid-binding protein, is up-regulated in the human failing heart. In this study, we examined the impact of AnxA4 on ß-adrenoceptor (ß-AR)/cAMP-dependent signal transduction. Expression of murine AnxA4 in human embryonic kidney (HEK)293 cells dose-dependently inhibited cAMP levels after direct stimulation of adenylyl cyclases (ACs) with forskolin (FSK), as determined with an exchange protein activated by cAMP-Förster resonance energy transfer (EPAC-FRET) sensor and an ELISA (control vs. +AnxA4: 1956 ± 162 vs. 1304 ± 185 fmol/µg protein; n = 8). Disruption of the anxA4 gene led to a consistent increase in intracellular cAMP levels in isolated adult mouse cardiomyocytes, with heart-directed expression of the EPAC-FRET sensor, stimulated with FSK, and as determined by ELISA, also in mouse cardiomyocytes stimulated with the ß-AR agonist isoproterenol (ISO) (anxA4a(+/+) vs. anxA4a(-/-): 5.1 ± 0.3 vs. 6.7 ± 0.6 fmol/µg protein) or FSK (anxA4a(+/+) vs. anxA4a(-/-): 1891 ± 238 vs. 2796 ± 343 fmol/µg protein; n = 9-10). Coimmunoprecipitation experiments in HEK293 cells revealed a direct interaction of murine AnxA4 with human membrane-bound AC type 5 (AC5). As a functional consequence of AnxA4-mediated AC inhibition, AnxA4 inhibited the FSK-induced transcriptional activation mediated by the cAMP response element (CRE) in reporter gene studies (10-fold vs. control; n = 4 transfections) and reduced the FSK-induced phosphorylation of the CRE-binding protein (CREB) measured on Western blots (control vs. +AnxA4: 150 ± 17% vs. 105 ± 10%; n = 6) and by the use of the indicator of CREB activation caused by phosphorylation (ICAP)-FRET sensor, indicating CREB phosphorylation. Inactivation of AnxA4 in anxA4a(-/-) mice was associated with an increased cardiac response to ß-AR stimulation. Together, these results suggest that AnxA4 is a novel direct negative regulator of AC5, adding a new facet to the functions of annexins.


Assuntos
Adenilil Ciclases/metabolismo , Anexina A4/metabolismo , Membrana Celular/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Adenilil Ciclases/genética , Animais , Anexina A4/genética , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Membrana Celular/genética , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Fosforilação/fisiologia
9.
Circ Heart Fail ; 8(1): 79-88, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25424392

RESUMO

BACKGROUND: New therapeutic approaches to improve cardiac contractility without severe risk would improve the management of acute heart failure. Increasing systolic sodium influx can increase cardiac contractility, but most sodium channel activators have proarrhythmic effects that limit their clinical use. Here, we report the cardiac effects of a novel positive inotropic peptide isolated from the toxin of the Black Judean scorpion that activates neuronal tetrodotoxin-sensitive sodium channels. METHODS AND RESULTS: All venoms and peptides were isolated from Black Judean Scorpions (Buthotus Hottentotta) caught in the Judean Desert. The full scorpion venom increased left ventricular function in sedated mice in vivo, prolonged ventricular repolarization, and provoked ventricular arrhythmias. An inotropic peptide (BjIP) isolated from the full venom by chromatography increased cardiac contractility but did neither provoke ventricular arrhythmias nor prolong cardiac repolarization. BjIP increased intracellular calcium in ventricular cardiomyocytes and prolonged inactivation of the cardiac sodium current. Low concentrations of tetrodotoxin (200 nmol/L) abolished the effect of BjIP on calcium transients and sodium current. BjIP did not alter the function of Nav1.5, but selectively activated the brain-type sodium channels Nav1.6 or Nav1.3 in cellular electrophysiological recordings obtained from rodent thalamic slices. Nav1.3 (SCN3A) mRNA was detected in human and mouse heart tissue. CONCLUSIONS: Our pilot experiments suggest that selective activation of tetrodotoxin-sensitive neuronal sodium channels can safely increase cardiac contractility. As such, the peptide described here may become a lead compound for a new class of positive inotropic agents.


Assuntos
Insuficiência Cardíaca/tratamento farmacológico , Ventrículos do Coração/efeitos dos fármacos , Coração/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Sódio/metabolismo , Tetrodotoxina/farmacologia , Animais , Modelos Animais de Doenças , Coração/fisiologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/metabolismo , Camundongos , Contração Miocárdica/efeitos dos fármacos , Projetos Piloto , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/metabolismo
10.
Circulation ; 129(12): 1276-1285, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24398018

RESUMO

BACKGROUND: The progression of atrial fibrillation (AF) from paroxysmal to persistent forms remains a major clinical challenge. Abnormal sarcoplasmic reticulum (SR) Ca(2+) leak via the ryanodine receptor type 2 (RyR2) has been observed as a source of ectopic activity in various AF models. However, its potential role in progression to long-lasting spontaneous AF (sAF) has never been tested. This study was designed to test the hypothesis that enhanced RyR2-mediated Ca(2+) release underlies the development of a substrate for sAF and to elucidate the underlying mechanisms. METHODS AND RESULTS: CREM-IbΔC-X transgenic (CREM) mice developed age-dependent progression from spontaneous atrial ectopy to paroxysmal and eventually long-lasting AF. The development of sAF in CREM mice was preceded by enhanced diastolic Ca(2+) release, atrial enlargement, and marked conduction abnormalities. Genetic inhibition of Ca(2+)/calmodulin-dependent protein kinase II-mediated RyR2-S2814 phosphorylation in CREM mice normalized open probability of RyR2 channels and SR Ca(2+) release, delayed the development of spontaneous atrial ectopy, fully prevented sAF, suppressed atrial dilation, and forestalled atrial conduction abnormalities. Hyperactive RyR2 channels directly stimulated the Ca(2+)-dependent hypertrophic pathway nuclear factor of activated T cell/Rcan1-4, suggesting a role for the nuclear factor of activated T cell/Rcan1-4 system in the development of a substrate for long-lasting AF in CREM mice. CONCLUSIONS: RyR2-mediated SR Ca(2+) leak directly underlies the development of a substrate for sAF in CREM mice, the first demonstration of a molecular mechanism underlying AF progression and sAF substrate development in an experimental model. Our work demonstrates that the role of abnormal diastolic Ca(2+) release in AF may not be restricted to the generation of atrial ectopy but extends to the development of atrial remodeling underlying the AF substrate.


Assuntos
Fibrilação Atrial/metabolismo , Cálcio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Fatores Etários , Animais , Fibrilação Atrial/genética , Fibrilação Atrial/fisiopatologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Sistema de Condução Cardíaco/metabolismo , Sistema de Condução Cardíaco/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo
11.
FASEB J ; 28(1): 143-52, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24022402

RESUMO

The transcription factors cAMP-responsive element binding protein (CREB) and cAMP-responsive element modulator (CREM) regulate gene transcription in response to elevated cAMP levels. The Crem isoform inducible cAMP early repressor (Icer) is transcribed by the internal promoter P2 as a critical regulator of multiple cellular processes. Here, we describe a novel inducible Crem isoform, small Icer (smIcer), regulated by a newly identified promoter (P6). ChIP revealed binding of CREB to P6 in human and mouse myocardium. P6 activity was induced by constitutively active CREB or stimulation of adenylyl cyclase. In mice, smIcer mRNA was ubiquitously expressed and transiently induced by ß-adrenoceptor stimulation e.g., in heart and lung. SmICER repressed both basal and cAMP-induced activities of P6 and P2 promoters. Stimulation of adenylyl cyclase induced P2 and P6 in cell type-specific manner. Alternative translational start sites resulted in three different smICER proteins, linked to increased apoptosis sensitivity. In conclusion, the Crem gene provides two distinct and mutually controlled mechanisms of a cAMP-dependent induction of transcriptional repressors. Our results suggest not only that smICER is a novel regulator of cAMP-mediated gene regulation, but also emphasize that biological effects that have been ascribed solely to ICER, should be revised with regard to smICER.


Assuntos
Modulador de Elemento de Resposta do AMP Cíclico/metabolismo , Regiões Promotoras Genéticas/genética , Animais , Apoptose , Linhagem Celular , AMP Cíclico/metabolismo , Modulador de Elemento de Resposta do AMP Cíclico/genética , Células HT29 , Humanos , Immunoblotting , Técnicas In Vitro , Miocárdio/metabolismo , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
Pacing Clin Electrophysiol ; 37(2): 173-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24025189

RESUMO

BACKGROUND: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an important cause of sudden cardiac death especially in times of increased sympathetic tone, for example, during sports, which have been confirmed by nuclear imaging studies. However, the underlying biochemical pathways remain to be delineated. Therefore, we investigated the expression levels of proteins of the signaling cascade in patients with ARVC. METHODS: During diagnostic work-up, right ventricular endomyocardial biopsies (EMBs) were sampled from 15 consecutive male ARVC patients (52 ± 14 years). Tissue levels of key proteins of the signaling cascade were analyzed. Results were compared to those obtained from EMBs of 10 patients with idiopathic right ventricular outflow-tract tachycardia (RVOT; 41 ± 14 years) and of five control subjects without identifiable structural heart disease (42 ± 13 years; P = ns). RESULTS: Among the proteins analyzed, only tissue levels of norepinephrine (NE; P < 0.04) and cyclic adenosine-3´,5´-monophospate (cAMP; P < 0.01) were significantly lower in ARVC when compared to RVOT patients. When compared to controls, mean cAMP levels were lower in patients with ARVC but did not reach statistical significance. No differences in cAMP were observed between RVOT and controls. CONCLUSIONS: The current findings confirm and expand the concept of adrenergic dysfunction in ARVC: the reduction of NE in ARVC could lead to an impaired stimulation of ß-adrenoceptor subsequent signaling pathways with potential implication for cardiac fibrosis and arrhythmogenesis.


Assuntos
Displasia Arritmogênica Ventricular Direita/complicações , Displasia Arritmogênica Ventricular Direita/metabolismo , Doenças do Sistema Nervoso Autônomo/complicações , Doenças do Sistema Nervoso Autônomo/metabolismo , AMP Cíclico/metabolismo , Ventrículos do Coração/metabolismo , Norepinefrina/metabolismo , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transdução de Sinais
13.
Naunyn Schmiedebergs Arch Pharmacol ; 386(5): 357-67, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23307014

RESUMO

In human atrium, serotonin (5-HT) exerts pleiotropic effects, which are thought to be mediated via 5-HT4 receptors. Here, we used transgenic mice (TG) that overexpress the human 5-HT4(a) receptor under control of the heart-specific α-myosin heavy chain promoter in the atria (and ventricles). Contractile studies were performed in isolated electrically driven left atrial preparations and spontaneously beating right atrial preparation of TG and littermate control mice (wild type (WT)). 5-HT increased force of contraction and phospholamban phosphorylation on serine 16 only in left atrial preparations from TG but not from WT. In contrast, ß-adrenoceptor stimulation of left atrial preparations by isoprenaline increased force of contraction with similar pEC50 values and to a similar maximum extent in both TG and WT. The contractile effects of 5-HT in left atrial preparations from TG could be blocked by the 5-HT4 receptor-specific antagonists GR125487 or GR113808. In right atrial preparations from WT and TG, the ß-adrenoceptor agonist isoprenaline exerted a positive chronotropic effect with similar pEC50 values and similar maximum effects. Only in right atrial preparations from TG but not WT, 5-HT exerted a positive chronotropic effect that could be attenuated by 5-HT4 receptor-specific antagonists. Finally, in left atrial preparations of TG, a higher incidence of arrhythmias was noted compared to WT. The present data indicate that the human 5-HT4 receptors expressed in mouse atria are functional. This is the first transgenic model to study this human receptor in the atrium ex vivo or in vivo.


Assuntos
Função Atrial/fisiologia , Contração Miocárdica/fisiologia , Receptores 5-HT4 de Serotonina/fisiologia , Animais , Função Atrial/efeitos dos fármacos , Átrios do Coração/efeitos dos fármacos , Humanos , Isoproterenol/farmacologia , Camundongos , Camundongos Transgênicos , Contração Miocárdica/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Serotonina/farmacologia
14.
Int J Cardiol ; 166(2): 366-74, 2013 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22093963

RESUMO

BACKGROUND AND METHODS: Atrial fibrillation (AF) is the most common cardiac arrhythmia in clinical practice. The substrate of AF is composed of a complex interplay between structural and functional changes of the atrial myocardium often preceding the occurrence of persistent AF. However, there are only few animal models reproducing the slow progression of the AF substrate to the spontaneous occurrence of the arrhythmia. Transgenic mice (TG) with cardiomyocyte-directed expression of CREM-IbΔC-X, an isoform of transcription factor CREM, develop atrial dilatation and spontaneous-onset AF. Here we tested the hypothesis that TG mice develop an arrhythmogenic substrate preceding AF using physiological and biochemical techniques. RESULTS: Overexpression of CREM-IbΔC-X in young TG mice (<8weeks) led to atrial dilatation combined with distension of myocardium, elongated myocytes, little fibrosis, down-regulation of connexin 40, loss of excitability with a number of depolarized myocytes, atrial ectopies and inducibility of AF. These abnormalities continuously progressed with age resulting in interatrial conduction block, increased atrial conduction heterogeneity, leaky sarcoplasmic reticulum calcium stores and the spontaneous occurrence of paroxysmal and later persistent AF. This distinct atrial remodelling was associated with a pattern of non-regulated and up-regulated marker genes of myocardial hypertrophy and fibrosis. CONCLUSIONS: Expression of CREM-IbΔC-X in TG hearts evokes abnormal growth and development of the atria preceding conduction abnormalities and altered calcium homeostasis and the development of spontaneous and persistent AF. We conclude that transcription factor CREM is an important regulator of atrial growth implicated in the development of an arrhythmogenic substrate in TG mice.


Assuntos
Fibrilação Atrial/metabolismo , Modulador de Elemento de Resposta do AMP Cíclico/biossíntese , Regulação da Expressão Gênica , Átrios do Coração/metabolismo , Miocárdio/metabolismo , Animais , Fibrilação Atrial/patologia , Fibrilação Atrial/fisiopatologia , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Camundongos , Camundongos Transgênicos , Miocárdio/patologia , Técnicas de Cultura de Órgãos , Fatores de Tempo
15.
Am J Physiol Heart Circ Physiol ; 302(10): H2008-17, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22427521

RESUMO

Calsequestrin (CSQ) is a Ca(2+) storage protein that interacts with triadin (TRN), the ryanodine receptor (RyR), and junctin (JUN) to form a macromolecular tetrameric Ca(2+) signaling complex in the cardiac junctional sarcoplasmic reticulum (SR). Heart-specific overexpression of CSQ in transgenic mice (TG(CSQ)) was associated with heart failure, attenuation of SR Ca(2+) release, and downregulation of associated junctional SR proteins, e.g., TRN. Hence, we tested whether co-overexpression of CSQ and TRN in mouse hearts (TG(CxT)) could be beneficial for impaired intracellular Ca(2+) signaling and contractile function. Indeed, the depressed intracellular Ca(2+) concentration ([Ca](i)) peak amplitude in TG(CSQ) was normalized by co-overexpression in TG(CxT) myocytes. This effect was associated with changes in the expression of cardiac Ca(2+) regulatory proteins. For example, the protein level of the L-type Ca(2+) channel Ca(v)1.2 was higher in TG(CxT) compared with TG(CSQ). Sarco(endo)plasmic reticulum Ca(2+)-ATPase 2a (SERCA2a) expression was reduced in TG(CxT) compared with TG(CSQ), whereas JUN expression and [(3)H]ryanodine binding were lower in both TG(CxT) and TG(CSQ) compared with wild-type hearts. As a result of these expressional changes, the SR Ca(2+) load was higher in both TG(CxT) and TG(CSQ) myocytes. In contrast to the improved cellular Ca(2+), transient co-overexpression of CSQ and TRN resulted in a reduced survival rate, an increased cardiac fibrosis, and a decreased basal contractility in catheterized mice, working heart preparations, and isolated myocytes. Echocardiographic and hemodynamic measurements revealed a depressed cardiac performance after isoproterenol application in TG(CxT) compared with TG(CSQ). Our results suggest that co-overexpression of CSQ and TRN led to a normalization of the SR Ca(2+) release compared with TG(CSQ) mice but a depressed contractile function and survival rate probably due to cardiac fibrosis, a lower SERCA2a expression, and a blunted response to ß-adrenergic stimulation. Thus the TRN-to-CSQ ratio is a critical modulator of the SR Ca(2+) signaling.


Assuntos
Cálcio/metabolismo , Calsequestrina/metabolismo , Proteínas de Transporte/metabolismo , Ventrículos do Coração/metabolismo , Proteínas Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Sinalização do Cálcio/fisiologia , Calsequestrina/genética , Proteínas de Transporte/genética , Modelos Animais de Doenças , Fibrose , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/citologia , Ventrículos do Coração/patologia , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Transgênicos , Proteínas Musculares/genética , Contração Miocárdica/fisiologia , Miócitos Cardíacos/citologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
16.
Basic Res Cardiol ; 107(2): 247, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22327339

RESUMO

The cardiac Na(+)/Ca(2+) exchanger (NCX) generates an inward electrical current during SR-Ca(2+) release, thus possibly promoting afterdepolarizations of the action potential (AP). We used transgenic mice 12.5 weeks or younger with cardiomyocyte-directed overexpression of NCX (NCX-Tg) to study the proarrhythmic potential and mechanisms of enhanced NCX activity. NCX-Tg exhibited normal echocardiographic left ventricular function and heart/body weight ratio, while the QT interval was prolonged in surface ECG recordings. Langendorff-perfused NCX-Tg, but not wild-type (WT) hearts, developed ventricular tachycardia. APs and ionic currents were measured in isolated cardiomyocytes. Cell capacitance was unaltered between groups. APs were prolonged in NCX-Tg versus WT myocytes along with voltage-activated K(+) currents (K(v)) not being reduced but even increased in amplitude. During abrupt changes in pacing cycle length, early afterdepolarizations (EADs) were frequently recorded in NCX-Tg but not in WT myocytes. Next to EADs, delayed afterdepolarizations (DAD) triggering spontaneous APs (sAPs) occurred in NCX-Tg but not in WT myocytes. To test whether sAPs were associated with spontaneous Ca(2+) release (sCR), Ca(2+) transients were recorded. Despite the absence of sAPs in WT, sCR was observed in myocytes of both genotypes suggesting a facilitated translation of sCR into DADs in NCX-Tg. Moreover, sCR was more frequent in NCX-Tg as compared to WT. Myocardial protein levels of Ca(2+)-handling proteins were not different between groups except the ryanodine receptor (RyR), which was increased in NCX-Tg versus WT. We conclude that NCX overexpression is proarrhythmic in a non-failing environment even in the absence of reduced K(V). The underlying mechanisms are: (1) occurrence of EADs due to delayed repolarization; (2) facilitated translation from sCR into DADs; (3) proneness to sCR possibly caused by altered Ca(2+) handling and/or increased RyR expression.


Assuntos
Potenciais de Ação/fisiologia , Arritmias Cardíacas/metabolismo , Coração/fisiologia , Proteínas de Homeodomínio/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Arritmias Cardíacas/genética , Western Blotting , Modelos Animais de Doenças , Eletrocardiografia , Proteínas de Homeodomínio/genética , Camundongos , Técnicas de Cultura de Órgãos
17.
Int J Cardiol ; 154(2): 116-21, 2012 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-20875921

RESUMO

BACKGROUND: Protein phosphatase 5 (PP5) a serine/threonine phosphatase is ubiquitously expressed in mammalian tissues including the heart, but its physiological role in the heart is still unknown. Therefore, we used a transgenic mouse model to get a first insight into the cardiac role of PP5. METHODS AND RESULTS: We generated transgenic mice with cardiac myocyte specific overexpression of PP5. Successful overexpression of PP5 was demonstrated by Western blotting, immunohistochemistry and enhanced arachidonic acid-stimulated protein phosphatase activity in transgenic hearts. Cardiac function was examined on the level of isolated cardiac myocytes, isolated organs and in intact animals. Whereas Ca(2+) transients and cell shortening remained unchanged, L-type Ca(2+) currents were decreased in isolated cardiac myocytes from transgenic mice. Ventricular contractility was reduced in isolated perfused hearts under basal conditions and after ß-adrenergic stimulation. In intact animals, echocardiography revealed increased left ventricular diameters and decreased contractility and invasively measured hemodynamic performance by left ventricular catheterization demonstrated a reduced response to ß-adrenergic stimulation in transgenic mice compared to wild type. CONCLUSIONS: Overexpression of PP5 affected contractility and ß-adrenergic signaling in the hearts of transgenic mice. Taken together, these findings are indicative of a regulatory role of PP5 in cardiac function.


Assuntos
Contração Miocárdica/fisiologia , Miócitos Cardíacos/enzimologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Animais , Canais de Cálcio Tipo L/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Humanos , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/citologia , Técnicas de Patch-Clamp , Ratos , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais/fisiologia , Transgenes/genética
18.
Hum Mutat ; 33(1): 109-17, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21887725

RESUMO

Very recently, mutations in the TRPM4 gene have been identified in four pedigrees as the cause of an autosomal dominant form of cardiac conduction disease. To determine the role of TRPM4 gene variations, the relative frequency of TRPM4 mutations and associated phenotypes was assessed in a cohort of 160 unrelated patients with various types of inherited cardiac arrhythmic syndromes. In eight probands with atrioventricular block or right bundle branch block--five familial cases and three sporadic cases--a total of six novel and two published TRPM4 mutations were identified. In patients with sinus node dysfunction, Brugada syndrome, or long-QT syndrome, no mutations were found. The novel mutations include six amino acid substitutions and appeared randomly distributed through predicted TRPM4 protein. In addition, eight polymorphic sites including two in-frame deletions were found. Mutations separated from polymorphisms by absence in control individuals and familial cosegregation in some families. In summary, TRPM4 gene mutations appear to play a major role in cardiac conduction disease but not for other related syndromes so far. The phenotypes are variable and clearly suggestive of additional factors modulating the disease phenotype in some patients.


Assuntos
Bloqueio Atrioventricular/genética , Bloqueio de Ramo/genética , Coração/fisiopatologia , Canais de Cátion TRPM/genética , Adolescente , Adulto , Sequência de Aminoácidos , Bloqueio Atrioventricular/etnologia , Bloqueio Atrioventricular/metabolismo , Bloqueio de Ramo/etnologia , Bloqueio de Ramo/metabolismo , Cálcio/metabolismo , Estudos de Casos e Controles , Estudos de Coortes , Análise Mutacional de DNA , Eletrocardiografia , Feminino , Genótipo , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Mutação , Linhagem , Fenótipo , Polimorfismo Genético , Deleção de Sequência
19.
J Muscle Res Cell Motil ; 32(3): 221-33, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21959857

RESUMO

Protein phosphatase (PP) type 2A is a multifunctional serine/threonine phosphatase that is involved in cardiac excitation-contraction coupling. The PP2A core enzyme is a dimer, consisting of a catalytic C and a scaffolding A subunit, which is targeted to several cardiac proteins by a regulatory B subunit. At present, it is controversial whether PP2A and its subunits play a critical role in end-stage human heart failure. Here we report that the application of purified PP2AC significantly increased the Ca2+-sensitivity (ΔpCa50=0.05±0.01) of the contractile apparatus in isolated skinned myocytes of non-failing (NF) hearts. A higher phosphorylation of troponin I (cTnI) was found at protein kinase A sites (Ser23/24) in NF compared to failing myocardium. The basal Ca2+-responsiveness of myofilaments was enhanced in myocytes of ischemic (ICM, ΔpCa50=0.10±0.03) and dilated (DCM, ΔpCa50=0.06±0.04) cardiomyopathy compared to NF. However, in contrast to NF myocytes the treatment with PP2AC did not shift force-pCa relationships in failing myocytes. The higher basal Ca2+-sensitivity in failing myocytes coincided with a reduced protein expression of PP2AC in left ventricular tissue from patients suffering from ICM and DCM (by 50 and 56% compared to NF, respectively). However, PP2A activity was unchanged in failing hearts despite an increase of both total PP and PP1 activity. The expression of PP2AB56α was also decreased by 51 and 62% in ICM and DCM compared to NF, respectively. The phosphorylation of cTnI at Ser23/24 was reduced by 66 and 49% in ICM and DCM compared to NF hearts, respectively. Our results demonstrate that PP2A increases myofilament Ca2+-sensitivity in NF human hearts, most likely via cTnI dephosphorylation. This effect is not present in failing hearts, probably due to the lower baseline cTnI phosphorylation in failing compared to non-failing hearts.


Assuntos
Insuficiência Cardíaca/metabolismo , Contração Miocárdica , Miocárdio/metabolismo , Proteína Fosfatase 2/metabolismo , Cálcio/metabolismo , Humanos , Miocárdio/citologia
20.
J Mol Cell Cardiol ; 51(5): 682-8, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21871897

RESUMO

In the neonatal mammalian heart, the role of ryanodine receptor (=Ca(2+) release channel)-mediated sarcoplasmic reticulum (SR) Ca(2+) release for excitation-contraction coupling is still a matter of debate. Using an adenoviral system, we overexpressed separately the junctional SR proteins triadin, junctin, and calsequestrin, which are probably involved in regulation of ryanodine receptor function. Infection of neonatal rat cardiac myocytes with triadin, junctin, or calsequestrin viruses, controlled by green fluorescent protein expression, resulted in an increased protein level of the corresponding transgenes. Measurement of Ca(2+) transients of infected cardiac myocytes revealed unchanged peak amplitudes under basal conditions but with overexpression of calsequestrin and triadin caffeine-releasable SR Ca(2+) content was increased. Our results demonstrate that an increased expression of triadin or calsequestrin is associated with an increased SR Ca(2+) storage but unchanged Ca(2+) signaling in neonatal rat cardiac myocytes. This is consistent with an ancillary role of the sarcoplasmic reticulum in excitation-contraction coupling in the developing mammalian heart.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Acoplamento Excitação-Contração/fisiologia , Transporte de Íons/fisiologia , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Adenoviridae , Animais , Animais Recém-Nascidos , Cafeína/farmacologia , Sinalização do Cálcio/fisiologia , Proteínas de Ligação ao Cálcio/genética , Calsequestrina/genética , Calsequestrina/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Acoplamento Excitação-Contração/efeitos dos fármacos , Regulação da Expressão Gênica , Vetores Genéticos , Coração/efeitos dos fármacos , Coração/fisiologia , Transporte de Íons/efeitos dos fármacos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Contração Miocárdica/efeitos dos fármacos , Contração Miocárdica/fisiologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...